If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16(x)^2+60x=16
We move all terms to the left:
-16(x)^2+60x-(16)=0
a = -16; b = 60; c = -16;
Δ = b2-4ac
Δ = 602-4·(-16)·(-16)
Δ = 2576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2576}=\sqrt{16*161}=\sqrt{16}*\sqrt{161}=4\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-4\sqrt{161}}{2*-16}=\frac{-60-4\sqrt{161}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+4\sqrt{161}}{2*-16}=\frac{-60+4\sqrt{161}}{-32} $
| -6v-9=105 | | 63+9u=16u | | -5z(z+8)(z-7)=0 | | 6(2x-4)=132 | | 6(x-4)=132 | | 2(x-4)=132 | | 7a+47=180 | | x^2-18x-73=-10 | | 7a+47=360 | | 5x-13=24×-2 | | 16=9x-5x | | (7-y)(2y+9)=0 | | 1=-12y | | 18=9(s-4) | | -15-5y=6 | | z/4−1=2 | | 3x-12+2x+80=180 | | x+18=7x-48 | | z/4− 1=2 | | 2x^2-12x=162 | | -12-12k=-1 | | 8k+12=0 | | 0.6=10x | | 5y2=80 | | 82.24=4x | | x+0.4x=84 | | -9w+4=13 | | 6+4x=1/3 | | 3x+1+2x=2+ | | 23-5v=4v+5v | | 2x-0=x=4 | | x^2=6x=1 |